Answer:
25 mL
Explanation:
Step 1: Given data
- Concentration of the concentrated solution (C₁): 2 M
- Volume of the concentrated solution (V₁): ?
- Concentration of the diluted solution (C₂): 0.1 M
- Volume of the diluted solution (V₂): 0.500 L
Step 2: Calculate the volume of the concentrated NaCl solution
We will use the dilution rule.
C₁ × V₁ = C₂ × V₂
V₁ = C₂ × V₂ / C₁
V₁ = 0.1 M × 0.500 L / 2 M
V₁ = 0.025 L = 25 mL
Ionization energy is the energy required to remove the
outermost electron from one mole of gaseous atom to produce 1 mole of gaseous
in to produce a charge of 1. The greater the ionization energy, the greater is
the chance f the electron to be removed from the nucleus. In this casse, Radium
has the largest ionization energy.
Metal atoms have outer electrons which are not tied to any one atom. These electrons can move freely within the structure of a metal when an electric current is applied. There are no such free electrons in covalent or ionic solids, so electrons can't flow through them - they are non-conductors.
In a shorter term - no
Answer:
<u><em>Arrhenius Acid:</em></u>
According to Arrhenius concept, Acids are proton donors.
Since H₂SO₄ have a proton (H⁺ ion) and it can donate it to be made a sulphate ion, So it is an Arrhenius acid.
See the following reaction =>
<u><em>H₂SO₄ + H₂O => HSO₄ + H₃O⁺</em></u>
<u><em>Arrhenius Base:</em></u>
An Arrhenius base is a a proton acceptor.
KOH accepts the proton to to made to KOH₂ and a proton acceptor.
See the following reaction =>
<u><em>KOH + H₂o => KOH₂ + OH⁻</em></u>
<u><em></em></u>
Answer:
c. Cr
Explanation:
The compound is containing ion.
If acid reacts with it, CO_2 evolves.
therefore, Cr would form a precipitate when added to an aqueous solution of this compound. Cr2CO3 is the precipitate.