Answer:
the initial temperature of the iron sample is Ti = 90,36 °C
Explanation:
Assuming the calorimeter has no heat loss to the surroundings:
Q w + Q iron = 0
Also when the T stops changing means an equilibrium has been reached and therefore, in that moment, the temperature of the water is the same that the iron ( final temperature of water= final temperature of iron = T )
Assuming Q= m*c*( T- Tir)
mc*cc*(T-Tc)+mir*cir*(T - Tir) = 0
Tir = 20.3 °C + 300 g * 4.186 J/g°C * (20.3 C - 19 °C) / ( 51.9 g * 0.449 J/g°C )
Tir = 90.36 °C
Note :
- The specific heat capacity of water is assumed 1 cal/g°C = 4.186 J/g°C
- We assume no reaction between iron and water
Copper oxide(solid) + Sulphuric Acid (aqueous)-> Copper Sulphate (aqueous)+ Water(liquid)
In equation form:
CuO +H2SO4 -> CuSO4 + H2O
The colour change you will see is black to blue as Copper oxide is usually found as a black powder. Upon the reaction with sulphuric acid it will change to a cyan blue.
If you heat the made solution of copper sulphate, the water will evaporate and you will be left with white anhydrous copper sulphate crystals.
<span>let x=gallons of current mixture to be drained
and replaced with pure antifreeze.
4-x=gallons of current mixture remaining in the car.</span>
<span>
0.15(4-x)+1.00x=0.50 x 4
0.6-.15x+x=2
0.85x=1.4
x=1.4/0.85 =1.65 gal
Thus, 1.65 gallons of current mixture to be drained and replaced with pure
antifreeze.</span>
The best answer between the two choices would be the first option TRUE because the scientific method is used to do more advance research and investigation on things.