Answer:
(a) λ = 0.496 um (b) S =2π Δ d sinθ/ λ (c) I =gI₀ (d) For the central diffraction peak, a total of 5 interference maxima are present or available.
Note: find an attached copy of a part of the solution to the given question below.
Explanation:
Solution
Recall that:
d = 6.6 um
λ₀ =d/10
λ₀ = 6.6 um
Now,
(a) We find the wavelength λ of the light in water.
Thus,
λ water = (λ₀ )/n
= 0.66/1.33
So,
λ water = λ = 0.496 um
(b) We find the phase difference between the waves from slit 1 and 2
Now,
if a <<d and a<<λ
Then the path difference between the rays will be
Δ S₂N = Δ d sinθ
Thus, the phase difference becomes,
S = 2π Δ/λ is S= 2π Δ d sinθ/ λ
<u>(</u>c) The next step is to derive an expression for the intensity I as function of O and other relevant parameters.
Now,
Let p be the point where these two rays interfere with each other.
Thus,
The electric field vector coming out from slot and and slot 2 is
E₁= E₀₁ cos (ks₁ p - wt) i
E₂ = E₀₂ cos (ks₂ p - wt) i
Note: Kindly find an attached copy of a part of the solution to the given question below.
Malleus, incus, and stapes, respectively, and collectively, as "middle ear ossicles<span>".</span>
Complete Question
The complete question is shown on the
Answer:
The ascending order would be 2nd < 1st < 3rd
Explanation:
Generally the the Normal force is mathematically represented as
=>
For the first drawing the value is between that of the the second and the third drawing so the Normal force would also be between the normal forces of the second and the third drawing
For the second drawing whose value of is less than that of the first and the third the normal force would also be less than that of the first and third
For the the third drawing whose value is (90°) which is higher than the first and the second the normal force would also be higher than the first and the second
I am pretty sure the answer is C.