Given :
Number of He atoms, atoms.
To Find :
How many grams are their in given number of He atoms.
Solution :
We know, molecular mass of He is 4 g. It means that their are atoms in 4 g of He.
Let, number of gram He in atoms is x , so :
Therefore, grams of He atoms is 22.58 g .
Answer:
b) pH = 9.25
Explanation:
- NH4+(aq) + H2O(l) ↔ NH3(aq) + H3O+(aq)
- NH3 + H2O ↔ NH4+ + OH-
- 2 H2O ↔ H3O+ + OH-
⇒ Kb = [ NH4+ ] * [ OH- ] / [ NH3 ] = 1.86 E-5......from literature
mass balance NH4+:
⇒ M NH4+ = [ NH4+ ] - [ OH- ]
∴ [ NH3 ] ≅ M NH4+ = 0.26 M
⇒ Kb = (( 0.26 + [ OH- ] )) * [ OH- ] / 0.26 = 1.86 E-5
⇒ 0.26 [ OH-] + [ OH- ]² = 4.836 E-6
⇒ [ OH- ]² + 0.26 [ OH- ] - 4.836 E-6 = 0
⇒ [ OH- ] = 1.859 E-5 M
⇒ pOH = - Log ( 1.859 E-5 )
⇒ pOH = 4.7305
⇒ pH = 14 - pOH = 9.269
Answer:
398 mL
Explanation:
Using the equation for molarity,
C₁V₁ = C₂V₂ where C₁ = concentration before adding water = 8.61 mol/L and V₁ = volume before adding water, C₂ = concentration after adding water = 1.75 mol/L and V₂ = volume after adding water = 500 mL = 0.5 L
V₂ = V₁ + V' where V' = volume of water added.
So, From C₁V₁ = C₂V₂
V₁ = C₂V₂/C₁
= 1.75 mol/L × 0.5 L ÷ 8.61 mol/L
= 0.875 mol/8.61 mol/L
= 0.102 L
So, V₂ = V₁ + V'
0.5 L = 0.102 L + V'
V' = 0.5 L - 0.102 L
= 0.398 L
= 398 mL
So, we need to add 398 mL of water to the nitric solution.
Answer:
Root mean squared velocity is different.
Explanation:
Hello!
In this case, since we have a mixture of oxygen and nitrogen at STP, which is defined as a condition whereas T = 298 K and P = 1 atm, we can infer that these gases have the same temperature, pressure, volume and moles but a different root mean squared velocity according to the following formula:
Since they both have a different molar mass (MM), nitrogen (28.02 g/mol) and oxygen (32.02 g/mol), thus we infer that nitrogen would have a higher root mean squared velocity as its molar mass is less than that of oxygen.
Best regards!