The IUPAC rules are
a) Find out the longest chain of carbon in the given organic compound
b) We will name the longest chain.
c) We will identify the main functional group and will assign a suffix to the compound.
d) We will number the carbons in the longest chain selected so that the attached groups attain lowest numeral as substituent
e) We will name the side groups or chains.
Hello!
The half-life is the time of half-disintegration, it is the time in which half of the atoms of an isotope disintegrate.
We have the following data:
mo (initial mass) = 53.3 mg
m (final mass after time T) = ? (in mg)
x (number of periods elapsed) = ?
P (Half-life) = 10.0 minutes
T (Elapsed time for sample reduction) = 25.9 minutes
Let's find the number of periods elapsed (x), let us see:
Now, let's find the final mass (m) of this isotope after the elapsed time, let's see:
I Hope this helps, greetings ... DexteR! =)
SAMPLE A - <span>pure substance.
</span>SAMPLE B - <span>homogeneous mixture.
</span>SAMPLE C - <span>heterogeneous mixture.
</span>Pure substance - <span>constant composition and properties.</span>
Homogeneous mixture - same uniform appearance and composition.
Heterogeneous mixture - <span>not </span>uniform<span> in composition, two phases (liquid and dust).
</span>
Answer:
16.9g
Explanation:Cu+2AgNO3→2Ag+Cu(NO3)2
Cu will likely have a +2 oxidation state. It is higher in the activity series than Ag, so it is a stronger reducing agent and will reduce Ag in a displacement reaction. Then you need to balance the coefficients knowing than NO3 is -1 and Ag is +1.
Then to calculate the theoretical yield you need to compare moles of the reactants:
m(Cu)=5g
M(Cu)=63.55
n(Cu)=5/63.55=0.0787
By comparing coefficients you require twice as much silver: 0.157mol
n(Ag)=0.157
M(Ag)=107.86
m(Ag)=0.157x107.86=16.9g
Hence, the theoretical yield of this reaction would be 16.9g
Answer : The mass of oxygen per gram of sulfur for sulfur dioxide and sulfur trioxide is, 0.997 g and 1.5 g respectively.
Explanation : Given,
Mass of oxygen in sulfur dioxide = 3.49 g
Mass of sulfur in sulfur dioxide = 3.50 g
Mass of oxygen in sulfur trioxide = 9.00 g
Mass of sulfur in sulfur trioxide = 6.00 g
Now we have to calculate the mass of oxygen per gram of sulfur for sulfur dioxide and sulfur trioxide.
Mass of oxygen per gram of sulfur for sulfur dioxide =
Mass of oxygen per gram of sulfur for sulfur dioxide =
and,
Mass of oxygen per gram of sulfur for sulfur trioxide =
Mass of oxygen per gram of sulfur for sulfur trioxide =
Thus, the mass of oxygen per gram of sulfur for sulfur dioxide and sulfur trioxide is, 0.997 g and 1.5 g respectively.