Answer:
27,000 m
450 m/s
Explanation:
Assuming the initial velocity is 0 m/s:
v₀ = 0 m/s
a = 15 m/s²
t = 60 s
A) Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (60 s) + ½ (15 m/s²) (60 s)²
Δy = 27,000 m
B) Find: v_avg
v_avg = Δy / t
v_avg = 27,000 m / 60 s
v_avg = 450 m/s
SBb type spiral. Its a type B because its not too tightly wound but its still too tight to be a type C
M= Height of image/height of the object
If, M>1, then height of image>height of object.
And therefore, image is larger than the object.
Answer:
91.84 m/s²
Explanation:
velocity, v = 600 m/s
acceleration, a = 4 g = 4 x 9.8 = 39.2 m/s^2
Let the radius of the loop is r.
he experiences a centripetal force.
centripetal acceleration,
a = v² / r
39.2 x r = 600 x 600
r = 3600 / 39.2
r = 91.84 m/s²
Thus, the radius of the loop is 91.84 m/s².
The rms speed can be calculated using the following rule:
rms = sqrt ((3RT) / (M)) where:
R is the gas constant = 8.314 J/mol-K
T is the temperature = 31.5 + 273 = 304.5 degrees kelvin
M is the molar mass = 2*14 = 28 grams = 0.028 kg
Substitute with the givens to get the rms speed as follows:
rms speed = sqrt [(3*8.314*304.5) / (0.028)] = 520.811 m/sec