Answer:
Height, H = 25.04 meters
Explanation:
Initially the ball is at rest, u = 0
Time taken to fall to the ground, t = 2.261 s
Let H is the height from which the ball is released. It can be calculated using the second equation of motion as :
Here, a = g
H = 25.04 meters
So, the ball is released form a height of 25.04 meters. Hence, this is the required solution.
60 days, tell me if I'm correct please.
The approximate orbital period of this star is 13 years.
<h3>What is Kepler's third law?</h3>
The square of a planet's period of revolution around the sun in an elliptical orbit is directly proportional to the cube of its semi-major axis, states Kepler's law of periods.
T² ∝ a³
The time it takes for one rotation to complete depends on how closely the planet orbits the sun. With the use of the equations for Newton's theories of motion and gravitation, Kepler's third law assumes a more comprehensive shape:
P² = 4π² /[G(M₁+ M₂)] × a³
where M₁ and M₂ are the two circling objects' respective masses in solar masses.
Learn more about Kepler's third law here:
brainly.com/question/1608361
#SPJ1
Thank you for posting your question here at brainly. I hope the answer will help you. Below is the solution. Feel free to ask more question.
<span>torque = rF
= 0.1(10)
=1 Nm</span>
Answer:
A) 199.78 J
B) 9.292x10^14 J
C) 4.2x10^7 m/s
D) 0.65 m
E) 1.13x10^-8 sec
D) 2.94x10^-9 sec
Explanation:
mass of ball = 0.0580 kg
A)
If smashed at v = 83.0 m/s, KE is
KE = 0.5mv^2
= 0.5 x 0.0580 x 83.0^2
= 199.78 J
B) if returned at v = 1.79×10^8 m/s, KE will be
KE = 0.5mv^2
= 0.5 x 0.0580 x (1.79×10^8)^2
= 9.292x10^14 J
C) during Einstein's return, velocity of rabbit relative to players is
Vr = 2.21×108 m/s
Rabbit's velocity relative to ball = 2.21×10^8 - 1.79×10^8
= 4.2x10^7 m/s
D) the rabbit's speed approaches the speed of light so we consider relativistic effect. The rabbit's measured distance is
l = l°( 1 - v^2/c^2)
= 2.5(1 - 2.21/3)
= 2.5 x 0.26
= 0.65 m
E) according to the players, the time taken by the rabbit is
t = d/v = 2.5/ 2.21×10^8
= 1.13x10^-8 sec
F) the time for rabbit as measured by rabbit is relativistic
t = t°( 1 - v^2/c^2)
= 1.13x10^-8 (1 - 2.21/3)
= 1.13x10^-8 x 0.26
= 2.94x10^-9 sec