To solve this problem we will apply the linear motion kinematic equations, which describe the change in velocity, depending on the acceleration and the distance traveled, that is,
Where,
= Final Velocity
= Initial Velocity
a = Acceleration
h = height
Our values are given as,
Replacing we have,
Therefore the height of the cliff is 121ft
Answer:
A. attracted to the negative terminal of the voltage source.
Explanation:
When an electron is displaced in a semiconductor, the hole that's left behind is
A. attracted to the negative terminal of the voltage source.
The electron leaving leaves a net + charge, which is attracted to the negative terminal.
So momentum is just velocity times mass, this means Momentum = Velocity x Mass.
We can rearrange this to be Velocity = Momentum/Mass.
Since we know momentum and mass we can now solve.
Velocity = 264/(45+2.5)
= 5.56 m/s
<span>What we need to first do is split the ball's velocity into vertical and horizontal components. To do that multiply by the sin or cos depending upon if you're looking for the horizontal or vertical component. If you're uncertain as to which is which, look at the angle in relationship to 45 degrees. If the angle is less than 45 degrees, the larger value will be the horizontal speed, if the angle is greater than 45 degrees, the larger value will be the vertical speed. So let's calculate the velocities
sin(35)*18 m/s = 0.573576436 * 18 m/s = 10.32437585 m/s
cos(35)*18 m/s = 0.819152044 * 18 m/s = 14.7447368 m/s
Since our angle is less than 45 degrees, the higher velocity is our horizontal velocity which is 14.7447368 m/s.
To get the x positions for each moment in time, simply multiply the time by the horizontal speed. So
0.50 s * 14.7447368 m/s = 7.372368399 m
1.00 s * 14.7447368 m/s = 14.7447368 m
1.50 s * 14.7447368 m/s = 22.1171052 m
2.00 s * 14.7447368 m/s = 29.48947359 m
Rounding the results to 1 decimal place gives
0.50 s = 7.4 m
1.00 s = 14.7 m
1.50 s = 22.1 m
2.00 s = 29.5 m</span>
Answer:
the velocity is zero, the acceleration is directed downward, and the force of gravity acting on the ball is directed downward
Explanation:
Is this exercise in kinematics
v = v₀ - g t
where g is the acceleration of the ball, which is created by the attraction of the ball to the Earth.
At the highest point
velocity must be zero.
The acceleration depends on the Earth therefore it is constant at this point and with a downward direction.
The force of the earth on the ball is towards the center of the Earth, that is, down
all other alternatives are wrong