Answer:
19.07 g mol^-1
Explanation:
The computation of the molecular mass of the unknown gas is shown below:
As we know that
where,
Diffusion rate of unknown gas = 155 mL/s
CO_2 diffusion rate = 102 mL/s
CO_2 molar mass = 44 g mol^-1
Unknown gas molercualr mass = M_unknown
Now placing these values to the above formula
After solving this, the molecular mass of the unknown gas is
= 19.07 g mol^-1
<u>Answer:</u> The molar mass of the insulin is 6087.2 g/mol
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:
Or,
where,
= osmotic pressure of the solution = 15.5 mmHg
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (insulin) = 33 mg = 0.033 g (Conversion factor: 1 g = 1000 mg)
Volume of solution = 6.5 mL
R = Gas constant =
T = temperature of the solution =
Putting values in above equation, we get:
Hence, the molar mass of the insulin is 6087.2 g/mol
3.21e+11 is your answer for 321 millimeters in picometers. Hope this helps!
Answer:
Explanation:
Atoms form chemical bonds to make their outer electron shells more stable. The type of chemical bond maximizes the stability of the atoms that form it. ... Covalent bonds form when sharing atoms results in the highest stability. Other types of bonds besides ionic and covalent chemical bonds exist, too.