Answer:Consider a sample that is a mixture composed of biphenyl, benzoic acid, and benzyl alcohol. The sample is spotted on a TLC ... Predict the relative Rf values for the three components in the sample. Hint: See Table 19.3. ... The sample is spotted on a TLC plate and developed in solvent mixture. We are going to predict the ...
Explanation:MORE POWER
I'd say that his comb has a static electricity charge. It can either be negative, or positive. Let's just say it's positive, and the water is negatively charged. This means that it will affect the water flow when the two charges meet. I hope this helps! ~Mia
It would have 11 valance electrons.
Example/Explanation:
Say we are talking about groups 10. Group 10 would have 10 valance electrons because of the atom's electronic arrangement in the periodic table.
Answer:
Explanation:
When calculating an empirical formula from percentages, assume you have a 100g sample. This allows you to convert the percentages directly to grams, because X % of 100g is X grams.
So:
24.42 % = 24.42 g Ca, 17.07% = 17.07g N, 58.5% = 58.5g O
The next step is to divide each mass by their molar mass to convert your grams to moles.
24.42/40.08 = 0.6092 mol
17.07/14.01 = 1.218 mol
58.85/15.99 = 3.680 mol
Then you will divide all of your mol values by the SMALLEST number of moles. This gives you whole numbers that are the mole ratio (subcripts) of the empircal formula.
0.6092 mol/0.6092 mol = 1
1.218 mol/0.6092 mol = 2
3.680 mol/0.6092 mol = 6
So the empirical formula is
Answer:
The difference in mass between 3.01×10^24 atoms of gold and a gold bar with the dimensions 6.00 cm X 4.25 cm X 2.00 cm is :
<u>Difference</u> <u>in mass</u> =<u> 985.32 - 984.5 = 0.82 g</u>
Explanation:
<u>Part I :</u>
n = 4.9983
n = 4.99 moles
(Note : You can also take n = 5 mole )
Molar mass of gold = 196.96 g/mole
This means, 1 mole of gold(Au) contain = 196.96 grams
So, 4.99 moles of gold contain = g
4.99 moles of gold contain = 984.8 g
Mass of atoms of gold = 984.5 g
<u>Part II :</u>
Density of Gold =
Volume of the cuboid =
Volume of the gold bar =
Volume of the gold bar = 51
Using formula,
Mass = 985.32 g
So, A gold bar with the dimensions 6.00 cm X 4.25 cm X 2.00 cm has mass of <u>985.32 g</u>
<u>Difference</u> <u>in mass</u> =<u> 985.32 - 984.5 = 0.82 g</u>