In what may be one of the most remarkable coincidences in
all of physical science, the tangential component of circular
motion points along the tangent to the circle at every point.
The object on a circular path is moving in that exact direction
at the instant when it is located at that point in the circle. The
centripetal force ... pointing toward the center of the circle ...
is the force that bends the path of the object away from a straight
line, toward the next point on the circle. If the centripetal force
were to suddenly disappear, the object would continue moving
from that point in a straight line, along the tangent and away from
the circle.
Answer:
Explanation:
First of all, I used the specific heat of water as 4182 J/(kgC) and the specific heat of ethyl alcohol (EtOH) as 2440 J/(kgC); that means that we need the masses in kg, not g.
120.g = .1200 kg of ethyl alcohol. Now for the formula:
where spheat is specific heat.
Filling that horrifying-looking formula in with some values:
and
and
16(4182x + 292.8) = 83640x + 2928 and
66912x + 4684.8 = 83640x + 2928 and
1756.8 = 16728x so
x = .105 kg and the amount of water added is 105 g
To the picture the answer is A. I can’t answer the typed question because I need the picture for the box
That's a loaded question. Well to me, through what I have heard from others and theories, I imagine there was other universes before us. It wasn't just nothingness, there was another universe, perhaps in another dimension that either ended or is still around today. Alternate dimensions are a theory, so it was probably just a matter of when ours would be born. We could've been the result of reaching the singularity in a black hole or we could've been the continuation of a grand generation of universes. Either way, I think before us there was other things that filled the void of darkness that we imagine to be before us.
Answer:
the case is the one with the greatest current, L=15 cm
, i = 2.19 10⁸ A
Explanation:
Ohm's law is
V = i R
Resistance is
R = ρ L / A
Where L is the length of the electrons pass and A the area perpendicular to the current
i = V / R
i = V (A / ρ L)
i = V / ρ (A / L)
We can calculate the relationship between the area and the length to know in which direction the maximum currents
Case 1
L = 0.15 m
A = 0.26 0.43 = 0.1118 m2
A / L = 0.1118 / 0.15
A / L = 0.7453 m
Case 2
L = 0.26 m
A = 0.15 0.43 = 0.0645 m2
A / L = 0.248 m
Case 3
L = 0.43 m
A = 0.15 0.26 = 0.039 m2
A / L = 0.0907 m
We can see that the case is the one with the greatest current, L=15 cm
Let's calculate the current
i = 5 / 1.7 10⁻⁸ (0.7453)
i = 2.19 10⁸ A