c. a tertiary alcohol; when a ketone reacts with a grignard reagent followed by protonation a tertiary alcohol is formed.
More about tertiary alcohol:
No hydrogen atoms are bonded to the functional group's carbon in a tertiary alcohol. Alcohols that have a hydroxyl group bonded to the carbon atom and are linked to three alkyl groups are referred to as tertiary alcohols. These alcohols' structural makeup largely determines their physical characteristics.
This -OH group's existence enables alcohols to create hydrogen bonds with the atoms next to them. Because of this weak connection, alcohols have higher boiling points than their alkane counterparts.
The alcohol is referred to as a tertiary (3°) alcohol if the carbon atom carrying the alcohol group is connected to three other carbon atoms in the alcohol molecule.
Learn more about tertiary alcohol here:
brainly.com/question/17419424
#SPJ4
The primary colors are blue, red, and yellow.
Answer:
molar composition for liquid
xb= 0.24
xt=0.76
molar composition for vapor
yb=0.51
yt=0.49
Explanation:
For an ideal solution we can use the Raoult law.
Raoult law: in an ideal liquid solution, the vapor pressure for every component in the solution (partial pressure) is equal to the vapor pressure of every pure component multiple by its molar fraction.
For toluene and benzene would be:
Where:
is partial pressure for benzene in the liquid
is benzene molar fraction in the liquid
vapor pressure for pure benzene.
The total pressure in the solution is:
And
Working on the equation for total pressure we have:
Since
We know P and both vapor pressures so we can clear from the equation.
So
To get the mole fraction for the vapor we know that in the equilibrium:
So
Something that we can see in these compositions is that the liquid is richer in the less volatile compound (toluene) and the vapor in the more volatile compound (benzene). If we take away this vapor from the solution, the solution is going to reach a new state of equilibrium, where more vapor will be produced. This vapor will have a higher molar fraction of the more volatile compound. If we do this a lot of times, we can get a vapor that is almost pure in the more volatile compound. This is principle used in the fractional distillation.