I believe the percentage is between 15-20%. Stress is a well known factor that affects the performance of people.
Answer:
F = 7,916,955.0N
Explanation:
According to newtons second law
Force = mass * acceleration
Given
mass = 52.0kg
distance S = 22.0m
time t = 17.0 ms = 0.017s
We need to get the acceleration first using the formula;
S = ut+ 1/2at²
22 = 0 + 1/2 a(0.017²)
22 = 0.0001445a
a = 22/0.0001445
a = 152,249.13m/s²
The magnitude of the average force exerted will be;
F = ma
F = 52 * 152,249.13
F = 7,916,955.0N
The moment of inertia is the rotational analog of mass, and it is given by
the product of mass and the square of the distance from the axis.
- The moment of inertia changes as the position of the weight is changed, which indicates that; statement is incorrect
Reasons:
The weight on each arm that have adjustable positions can be considered as point masses.
The moment of inertia of a point mass is <em>I</em> = m·r²
Where;
m = The mass of the weight
r = The distance (position) from the center to which the weight is adjusted
Therefore;
The moment of inertia, <em>I </em>∝ r²
Which gives;
Doubling the distance from the center of rotation, increases the moment of inertia by factor of 4.
Therefore, the statement contradicts the relationship between the radius of rotation and moment of inertia.
Learn more about moment of inertia here:
brainly.com/question/4454769
-- <u><em>Current is measured in amps.</em></u> (You can use any symbol you want to represent current, but the most common one is " I ", not "Δ".)
-- <u><em>The relationship between current, voltage, and resistance is mathematically defined by Ohm's Law. </em></u>
-- <u><em>Current is the flow of electrons through a circuit.</em></u>
-- (Ohm's Law is NOT mathematically represented by the equation V=I/R.) <u><em>It should be V = I · R</em></u> .
(When solving for Resistance in a circuit and both voltage and current are known values, the equation I =V*R is not true, and not the way to solve it.) <u><em>If the resistance is what you're looking for, then the equation to use is </em></u><u><em>R = V / I</em></u><u><em> . </em></u>
<em>-- </em><u><em>If the voltage in a circuit is increased, the current will also increase.</em></u>
Answer:
B: False
Explanation:
The second law of thermodynamics states that: the entropy of an isolated system will never decrease because isolated systems always tend to evolve towards thermodynamic equilibrium which is a state with maximum entropy.
Thus, it means that the entropy change will always be positive.
Therefore, the given statement in the question is false.