<span>An ax is an example of a wedge. The correct option among all the options that are given in the question is the second option or option "b". The other choices given in the question are incorrect and can be easily neglected. I hope that this is the answer that has actually come to your great help.</span>
Answer:
ΔU = 5.21 × 10^(10) J
Explanation:
We are given;
Mass of object; m = 1040 kg
To solve this, we will use the formula for potential energy which is;
U = -GMm/r
But we are told we want to move the object from the Earth's surface to an altitude four times the Earth's radius.
Thus;
ΔU = -GMm((1/r_f) - (1/r_i))
Where;
M is mass of earth = 5.98 × 10^(24) kg
r_f is final radius
r_i is initial radius
G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²
Since, it's moving to altitude four times the Earth's radius, it means that;
r_i = R_e
r_f = R_e + 4R_e = 5R_e
Where R_e is radius of earth = 6371 × 10³ m
Thus;
ΔU = -6.67 × 10^(-11) × 5.98 × 10^(24)
× 1040((1/(5 × 6371 × 10³)) - (1/(6371 × 10³))
ΔU = 5.21 × 10^(10) J
Answer:
149 m
Explanation:
The distances across the lake is forming a triangle.
let the distance between the point and the left side be 'x'
and the distance between the point and the right be 'y'
and the distance across the lake be 'z' and the angle opposite to 'z' be 'Z' given:
∠Z = 83°
x = 105 m
y = 119 m
Now, applying the Law of Cosines, we get
z² = x² + y² - 2xycos(Z)
Substituting the values in the above equation, we get
z² = 105² + 119² - 2×105×119×cos(83°)
or
z = √22140.48
or
z = 148.796 m ≈ 149 m
The point is 149 m across the lake