Answer:
<em>The force required is 3,104 N</em>
Explanation:
<u>Force</u>
According to the second Newton's law, the net force exerted by an external agent on an object of mass m is:
F = ma
Where a is the acceleration of the object.
On the other hand, the equations of the Kinematics describe the motion of the object by the equation:
Where:
vf is the final speed
vo is the initial speed
a is the acceleration
t is the time
Solving for a:
We are given the initial speed as vo=20.4 m/s, the final speed as vf=0 (at rest), and the time taken to stop the car as t=7.4 s. The acceleration is:
The acceleration is negative because the car is braking (losing speed). Now compute the force exerted on the car of mass m=1,126 kg:
F= 3,104 N
The force required is 3,104 N
The FREQUENCY of light remains unchanged once it leaves the source.
Electrons are the right subatomic particle
Answer:
N = 3.54 * 10²³ atoms
Explanation:
The formula to apply here is the idea gas law;
PV = nRT where ;
P= pressure of the gas= 1.013 * 10⁵ Pa
V= volume of the gas = 4/3 * 3.14 *0.15³= 0.01414 m³
n= amount of a substance = ?
R= ideal gas constant= 8.314
T= temperature= 293 K
Applying the values to the formula;
PV = nRT
1.013 * 10⁵ * 0.01414 = n * 8.314*293
n= 1.013 * 10⁵ * 0.01414 / 8.314*293
n= 0.588 moles
1 mole = 6.022 * 10²⁷ atoms/ mole
0.588 moles = 0.588 * 6.022 * 10²⁷
N = 3.54 * 10²³ atoms
The answer is true I think