Answer:
when u find out pls lmk! i have the same question and I've been stuck for a while lol
The goalkeeper at his goal cannot kick a soccer ball into the opponent’s goal without the ball touching the ground
Explanation:
Consider the vertical motion of ball,
We have equation of motion v = u + at
Initial velocity, u = u sin θ
Final velocity, v = 0 m/s
Acceleration = -g
Substituting
v = u + at
0 = u sin θ - g t
This is the time of flight.
Consider the horizontal motion of ball,
Initial velocity, u = u cos θ
Acceleration, a =0 m/s²
Time,
Substituting
s = ut + 0.5 at²
This is the range.
In this problem
u = 30 m/s
g = 9.81 m/s²
θ = 45° - For maximum range
Substituting
Maximum horizontal distance traveled by ball without touching ground is 45.87 m, which is less than 95 m.
So the goalkeeper at his goal cannot kick a soccer ball into the opponent’s goal without the ball touching the ground
just search up the answer/ definition to all of them, rephrase into own words, then do the same for examples.
Answer:
33.6371 m
Explanation:
t = Time taken
u = Initial velocity = 20.3 m/s
v = Final velocity
s = Displacement
a = Acceleration = -7 m/s²
Distance traveled in the 0.207 seconds
Distance = Speed × Time
⇒Distance = 20.3×0.207 = 4.2021 m
Equation of motion
Distance traveled by the car while braking is 29.435 m
Total distance measured from the point where the driver first notices the red light is 29.435+4.2021 = 33.6371 m
The term you need to know is equilibrium. Technically it means that heat gained = heat lost. Normally in beginning chemistry classes the evidence for this condition is a stable temperature.