Answer:
A. weak acid and its conjugate base
Explanation:
A buffer solution can be made with a weak acid and conjugate base or a weak base and conjugate acid.
This may help you:
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Acids_and_Bases/Buffers/Introduction_to_Buffers
Answer:
Separating Sand and Salt
Probably the easiest method to separate the two substances is to dissolve salt in water, pour the liquid away from the sand, and then evaporate the water to recover the salt.
Answer:
The concentration of the CaBr2 solution is 96 µmol/L
Explanation:
<u>Step 1:</u> Data given
Moles of Calciumbromide (CaBr2) = 4.81 µmol
Volume of the flask = 50.0 mL = 0.05 L
<u>Step 2:</u> Calculate the concentration of Calciumbromide
Concentration CaBr2 = moles CaBr2 / volume
Concentration CaBr2 = 4.81 µmol / 0.05 L
Concentration CaBr2 = 96.2 µmol /L = 96.2 µM
The concentration of the CaBr2 solution is 96 µmol/L
Answer:
Explanation:
Alka Seltzer tablet contains 325 mg of aspirin (acetylsalicylic acid), 1000 mg of citric acid, and 1916 mg of sodium bicarbonate. The acids originally contained in a tablet give only 17.4 mmol of H+, which is not enough to neutralize all of the sodium bicar- bonate (22.8 mmol).
Mass defect for oxygen-16 = 0. 13261 amu, in the kilograms the mass defect equals to 2.20 × 10⁻²⁸ kg.
<h3>What is mass defect?</h3>
Mass defect is the difference between the mass of of an whole atom and the combined mass of its individual particles present in that atom.
We know that, 1 amu = 1.6 × 10⁻²⁷ kg
Given that, mass defect for oxygen-16 = 0.13261 amu
To calculate this defect in terms of kilograms, we have to convert into kg unit as:
0.13261 amu = 0.13261 amu × 1.6 × 10⁻²⁷ kg/amu
0.13261 amu = 2.20 × 10⁻²⁸ kg
Hence option (2) is correct.
To know more about Mass defect, visit the below link:
brainly.com/question/4334375