Answer:
Let the weight of the person be W and be located at a distance 'a' from the left scale as shown in the figure
Since the body is in equilibrium we can use equations of statics to analyse the problem.
Taking Sum of Moments about A we have
Taking Sum of Moments about B we have
Solving the above 2 equations for W and 'a' we get
Answer:
The correct option is;
C. 1,715 m
Explanation:
We are given the information from the group of teen at the City edge
Time of arrival of explosion sound = 5 s after sighting
Time of sighting explosion = 5 s before hearing the boom
Speed of sound in air ≈ 343 m/s
Speed of light = 299,792 km/s
Therefore, distance covered by sound in 5 seconds is given by the following equation;
Hence Distance = 343 m/s × 5 s = 1715 m
To check, we compare the time it would take for the light to cover 1715 m
That is which is instantaneous hence the distance can be approximated by the time duration for the speed of sound.
Therefore, the distance of the students from the factory is approximately 1,715 m
Answer:
the answer is false :)
Explanation:
Science is based on theories and tests, if someone has a theory they will test and if it is correct yippie! and if it isn't they will redo the test over until they get it correct or unless it is unsolvable.
After reading this whole question, I feel like I've already
earned 5 points !
-- Two satellites at the same distance, different masses:
The forces of gravity between two objects are directly
proportional to the product of the objects' masses. In
other words, the gravitational forces between the Earth
and an object on its surface are proportional to the mass of
the object. In other words, people with more mass weigh more
on the Earth, and the Earth weighs more on them.
If the satellites are both at the same distance from Earth,
then the Earth pulls on the one with more mass with greater
force, and also the one with more mass pulls on the Earth
with greater force.
-- Two satellites with the same mass, at different distances:
The forces of gravity between two objects are inversely
proportional to the square of the distance between them.
In other words, the gravitational
forces between the Earth
and an object are inversely proportional
to the square of
the distance between the object and the center of the Earth.
If
the satellites both have the same mass, then the Earth
pulls on the nearer one with greater force, and also the
nearer one pulls on the Earth with greater force.
-- Resistor in a circuit when the voltage changes:
The resistance depends on how the resistor was manufactured.
Its resistance is marked on it, and doesn't change. It remains
the same whether the voltage changes, the current changes,
the time of day changes, the cost of oil changes, etc.
If you increase the voltage in the circuit where that resistor is
installed, the current through the resistor increases. If the current
remains constant, then you can be sure that somebody snuck over
to your circuit when you weren't looking, and they either installed
another resistor in series with the original one to make the total
resistance bigger, or else they snipped the original one out of the
circuit and quickly connected one with more resistance in its place.