Answer:
19.1 deg
Explanation:
v = speed of the proton = 8 x 10⁶ m/s
B = magnitude of the magnetic field = 1.72 T
q = magnitude of charge on the proton = 1.6 x 10⁻¹⁹ C
F = magnitude of magnetic force on the proton = 7.20 x 10⁻¹³ N
θ = Angle between proton's velocity and magnetic field
magnitude of magnetic force on the proton is given as
F = q v B Sinθ
7.20 x 10⁻¹³ = (1.6 x 10⁻¹⁹) (8 x 10⁶) (1.72) Sinθ
Sinθ = 0.327
θ = 19.1 deg
Answer:
Latent heatnof fusion = 417.5 J
Explanation:
Specific latent heat of fusion of water is 334kJ.kg-1.
The heat required to melt water when it's ice I called latent heat because there is no temperature change, the only change observed is change in physical structure.
The amount of heat required to change 1 kg of solid to its liquid state (at its melting point) at atmospheric pressure is called Latent heat of Fusion.
Latent heat = ML
Latent heat= 1.25 kg * 334kJ.kg-1
Latent heat = 1.25*334 *(J/kg)*kg
Latent heat = 417.5 J
Answer:All three states of matter (solid, liquid and gas) expand when heated. ... Heat causes the molecules to move faster, (heat energy is converted to kinetic energy ) which means that the volume of a gas increases more than the volume of a solid or liquid.
Explanation:well I tried lol she just copied and pasted faster than I could
I think you're saying that once you start pushing on the cars, you want to be able to stop each one in the same time.
This is sneaky. At first, I thought it must be both 'c' and 'd'. But it's not
kinetic energy, for reasons I'm not ambitious enough to go into.
(And besides, there's no great honor awarded around here for explaining
why any given choice is NOT the answer.)
The answer is momentum.
Momentum is (mass x speed). Change in momentum is (force x time).
No matter the weight (mass) or speed of the car, the one with the greater
momentum is always the one that will require the greater (force x time)
to stop it. If the time is the same for any car, then more momentum
will always require more force.