Answer:
d. Hydrophobic molecules are attracted to each other.
Explanation:
The term “hydrophobic effect” is associated with the spontaneous tendency of macromolecules, such as proteins, to prefer a conformation in an aqueous medium, with hydrophobic groups facing the interior of the mac romolecule, favoring attractive intramolecular interactions, and hydrophilic groups exposed on the surface, for maximize interactions with water molecules in the medium. This is because the hydrophobic molecules are attracted to each other, allowing them to turn inward.
What volume of 2.50 m lead ll nitrato
Answer:
Because time is independent of distance, and distance is dependent of time.
Explanation:
Usually, on any graph, the independent variable is plotted on the x-axis and the dependent variable is plotted on the y-axis. Because of this, time, which is independent (time happens regardless of any other factor), is on the x-axis while distance, which is the dependent variable (can only take place in time), is on the y-axis.
It is important to note that mass and mole pertain to different units of measurement, thus, 1 mole of one substance may have a lower or higher mass compared to a different substance. The mass of an object gives a measure of the number of atoms present in the substance while the number of moles of a substance refers to the amount of a chemical substance it has and is often used for chemical reactions.
For this problem, we first get the molar mass of each substance:
Molar mass of H2O = 18.0153 g/mol
Molar mass of C6H12O6 = 180.1559 g/mol
We then convert each substance into units of mass (grams), where:
1 mol H20 x 18.0153 g/mol = 18.0153 g H20
1 mol C6H12O6 x 180.1559 g/mol = 180.1559 g C6H12O6
It was then determined that 1 mole of glucose has more mass than 1 mole of water.