Answer:
So the answer would be 10 moles
Explanation:
1) Start with the molecular formula for water:
2) If there are 10 moles of water use a mole ratio to calculate the moles of oxygen it would produce.
(This question is... interesting... since they chose an element that is diatomic in free state so It could TECHNICALLY be two answers, moles of O or moles of )
The mole ratio is 1 moles of to 1 moles of O. This is because the coefficient for oxygen in water is simple 1, so the ratio is 1:1.
3) that means if 10 moles of water decompose, they decompose into 10 moles of and 10 moles of O.
Extra:
About what I was saying before about the question being slightly interesting:
10 moles of pure oxygen is produced but free state oxygen exists as so it could possibly be 10 OR 5! However, notice it says elements. This leads me to believe the answer is 10 (monatomic oxygen) instead of 5 (free state/diatomic oxygen).
I hope this helps!
Answer:
Water and salt = salt water
Oxygen and water = sea foam
Smoke and fog = smog
Explanation:
Hope this helped, nya~ :3
The element which has the electronic configuration is CHLORINE.
The atomic number of chlorine is 17 and it has 7 valence electrons in its outermost shell. Because it needs only one more electrons to have a stable octet, it usually react with metals from group one of the periodic table who are normally willing to donate the single electrons in their outermost shells. The ground state electronic configuration of chlorine atom is 1S^2 2S^2 2P^6 3S^2 3P^5.
The gravitational pull generates this cool thing called tidal force, which kinda pushes the water to the side closest to the moon. When the tide is high, that means the moons closer to that point than somewhere else.
Two sides will always have high tide and two sides will always have low tide.
The question is incomplete.
You need two additional data:
1) the original volume
2) what solution you added to change the volume.
This is a molarity problem, so remember molarity definition and formula:
M = n / V in liters: number of moles per liter of solution
To give you the key to answer this kind of questions, supppose the original volumen was 1 ml and that you added only water (solvent).
The original solution was:
V= 1 ml
M = 0.2 M
Using the formula for molarity, M = n / V
n = M×V = 0.2 M × (1 / 10000)l = 0.0002 moles
For the final solution:
n = 0.0002 moles
M = 0.04
From M = n / V ⇒ V = n / M = 0.002 moles / 0.04 M = 0.05 l
Change to ml ⇒ 0.05 l × 1000 ml / l = 50 ml. This would be the answer for the hypothetical problem that I assumed for you.
I hope this gives you all the cues you need to answer similar problems about molarity.