Answer:
108.37°C
Explanation:
P₁ = Initial pressure = 101 kPa
V₁ = Initial volume = 530 m³
T₁ = Initial temperature = 10°C = 10+273.15 =283.15 K
P₂ = Final pressure = 101 kPa (because it is open to atmosphere)
V₂ = Final volume = 530 m³
P₁V₁ = n₁RT₁
⇒101×530 = n₁RT₁
⇒53530 J = n₁RT₁
P₂V₂ = n₂RT₂
⇒53530 J = n₂RT₂
Dividing the first two equations we get
∴Temperature must the air in the balloon be warmed before the balloon will lift off is 381.25-273.15 = 108.37°C
Answer:Kinetic energy is directly proportional to the mass of the object and to the square of its velocity: K.E. = 1/2 m v2. If the mass has units of kilograms and the velocity of meters per second, the kinetic energy has units of kilograms-meters squared per second squared.
Answer:
ω = 3.1 rad/s
θ = 36° from vertical
Explanation:
I will ASSUME that the bob and string is acting as a pendulum.
Please understand that the string will break when the bob is at the lowest point of the swing where the vectors of gravity and centripetal acceleration align. It will NOT break at the angle of maximum inclination measured from vertical. This angle is only a component of the maximum potential energy that gets converted to maximum kinetic energy at the lowest point of the swing.
At the bottom of the swing, the string must support the weight of the bob plus supply the required centripetal acceleration.
F = mg + mω²R
F/m = g + ω²R
F/m - g = ω²R
ω = √((F/m - g)/R)
ω = √((3/0.220 - 9.8)/0.40)
ω = 3.09691...
ω = 3.1 rad/s
Potential energy will convert to kinetic energy
mgh = ½mv²
h = v²/2g
R - Rcosθ = v²/2g
R(1 - cosθ) = v²/2g
1 - cosθ = v²/2gR
cosθ = 1 - v²/2gR
cosθ = 1 - (Rω)²/2gR
cosθ = 1 - Rω²/2g
cosθ = 1 - 0.40(3.1²)/(2(9.8))
cosθ = 0.804267
θ = 36.46045...
θ = 36°
As per Weins displacement law the wavelength of light for which we get the peak of the graph is always inversely proportional to the temperature.
So we can say
So here if temperature becomes more cool then wavelength will increase
here we know that
It means the hottest star out of all three is star 3
and coolest star is star 1
now if we star 2 becomes cooler then it means its temperature will go near to star 1 and hence it will more look like to star 1.
So correct answer is
it will look more like Star 1
The metal's ability to conduct heat and become an evenly heated surface relatively quickly makes it useful for ironing. An uneven heat distribution is more likely to produce hot and cold patches, resulting in burnt clothes. Moreover, if the metal didn't conduct electricity well, the heating element would have to use more energy to produce the same amount of heat in the iron.