<h3>
Answer:</h3>
5.6 L
<h3>
Explanation:</h3>
We are given;
- Initial volume, V1 = 3.5 L
- Initial pressure, P1 = 0.8 atm
- Final pressure, P2 = 0.5 atm
We are required to calculate the final volume;
- According to Boyle's law, the volume of a fixed mass of a gas and the pressure are inversely proportional at a constant temperature.
- That is; P α 1/V
- Mathematically, P=k/V
- At two different pressure and volume;
P1V1 = P2V2
In this case;
Rearranging the formula;
V2 = P1V1 ÷ P2
= (0.8 atm × 3.5 L) ÷ 0.5 atm
= 5.6 L
Therefore, the resulting volume is 5.6 L
Answer:
The volume of the piece of iron is 5.18dL.
Explanation:
The density (ρ) is equal to the mass (m) divided the volume (V).
If we rearrange it, we have:
To express the volume in dL we will need the following relations:
- 1 dL = 0.1 L
- 1 kg = 10³ g
- 1 cm³ = 1 mL
- 1mL = 10⁻³L
Then,
Finally,
I think the answer is force
<span>The rate of infusion is 2.1L/19h or 2100mL/19h (as 1L = 100 mL).
To convert 19 hours to minutes we multiply as follows:
19 hours = (19 hours) x (60 minutes/1 hour) = 1140 minutes
So the rate of infusion becomes:
2100mL /1140 min
In order to converted mL to drops (gtt) we multiply the rate of infusion with the drop factor to get the drip rate:
(2100mL/1140min) x (20 gtt/mL) = 36.8 gtt/min</span>