Answer:
Proteins and nucleic acids
Explanation:
Nitrogen compounds in animals that are no longer of use, or are in access are excreted from the animals body, and are thus called nitrogenous waste. These nitrogenous waste can be excreted in three different ways.
1. Ammonia
2. Urea
3. Uric acid
Non-metal atoms gain an electron, or electrons, from another atom to become >negatively charged ions.
Answer:
1.84 L
Explanation:
Using the equation for reversible work:
Where:
W is the work done (J) = -287 J.
Since the gas did work, therefore W is negative.
P is the pressure in atm = 1.90 atm.
However, work done is in joules and pressure is in atm. We can use the values of universal gas constant as a convenient conversion unit. R = 8.314 J/(mol*K); R = 0.0821 (L*atm)/(mol*K)
Therefore, the conversion unit is 0.0821/8.314 = 0.00987 (L*atm)/J
is the initial volume = 0.350 L
is the final volume = ?
Thus:
(-287 J)*0.00987 (L*atm)/J = -1.9 atm*( - 0.350) L
= [(287*0.00987)+(1.9*0.350)]/1.9 = (2.833+0.665)/1.9 =1.84 L
The answer for the following problem is described below.
<em><u> Therefore the standard enthalpy of combustion is -2800 kJ</u></em>
Explanation:
Given:
enthalpy of combustion of glucose(Δ of ) =-1275.0
enthalpy of combustion of oxygen(Δ of ) = zero
enthalpy of combustion of carbon dioxide(Δ of ) = -393.5
enthalpy of combustion of water(Δ of ) = -285.8
To solve :
standard enthalpy of combustion
We know;
Δ = ∈Δ (products) - ∈Δ (reactants)
(s) +6 (g) → 6 (g)+ 6 (l)
Δ = [6 (-393.5) + 6(-285.8)] - [6 (0) + (-1275)]
Δ = [6 (-393.5) + 6(-285.8)] - [0 - 1275]
Δ = 6 (-393.5) + 6(-285.8) - 0 + 1275
Δ = -2361 - 1714 - 0 + 1275
Δ =-2800 kJ
<em><u> Therefore the standard enthalpy of combustion is -2800 kJ</u></em>
Answer:
The correct option is: (D) -2.4 kJ/mol
Explanation:
<u>Chemical reaction involved</u>: 2PG ↔ PEP
Given: The standard Gibb's free energy change: ΔG° = +1.7 kJ/mol
Temperature: T = 37° C = 37 + 273.15 = 310.15 K (∵ 0°C = 273.15K)
Gas constant: R = 8.314 J/(K·mol) = 8.314 × 10⁻³ kJ/(K·mol) (∵ 1 kJ = 1000 J)
Reactant concentration: 2PG = 0.5 mM
Product concentration: PEP = 0.1 mM
Reaction quotient:
<u>To find out the Gibb's free energy change at 37° C (310.15 K), we use the equation:</u>
<u>Therefore, the Gibb's free energy change at 37° C (310.15 K): </u><u>ΔG = (-2.45 kJ/mol)</u>