Use Charles' Law: V1/T1 = V2/T2. We assume the pressure and mass of the helium is constant. The units for temperature must be in Kelvin to use this equation (x °C = x + 273.15 K).
We want to solve for the new volume after the temperature is increased from 25 °C (298.15 K) to 55 °C (328.15 K). Since the volume and temperature of a gas at a constant pressure are directly proportional to each other, we should expect the new volume of the balloon to be greater than the initial 45 L.
Rearranging Charles' Law to solve for V2, we get V2 = V1T2/T1.
(45 L)(328.15 K)/(298.15 K) = 49.5 ≈ 50 L (if we're considering sig figs).
<span>STP means standard temperature
and pressure at 0°C (273K) and 1 atm (atmosphere). The density of the unknown
gas is 0.63 gram per liter. The deal gas equation is PV = nRT. The n is the
numer of moles and can be represented as mass of the gas, m, divided by the
molar mass, c. so we have,</span>
PV = nRT
PV = (m/c)RT
Since the density is d = m/V
Pc = (m/V)RT
Pc = dRT
c = drT/P
substitute the values into the equation,
c = [(0.63g/L)(0.08206
L-atm/mol-K)(273K)]/(1atm)
<u>c = 14.11 g/mol</u>
Answer:
See explanation below
Explanation:
In an electrochemical cell, electricity is obtained by the gradual deterioration of the anode.
Hence, surface area of the metal will affect the length of time within which the electrochemical cell works.
The greater the surface area of the metal, the longer the electrochemical cell can function and the greater the quantity of electricity produced, hence the answer above.
Answer:
The ion will repel the substance because it has more protons than electrons.
Explanation: