Answer:
This is google's answer for the last question
Explanation:
The kinetic energy increases as the particles move faster. The potential energy increases as the particles move farther apart. How are thermal energy and temperature related? When the temperature of an object increases, the average kinetic energy of its particles increases.
Answer:
Investigating a data breach
Explanation:
A data breach usually involves data exfiltration over a computer network. the other options involve data being stored on a device locally which isn't volatile data like text messages, photos or rearranging data in defragmentation all of which does not require a network.
Of heating. Or when the lake is exposed to boil because of the temperature.
An exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy),[1] indicating a spontaneous reaction. For processes that take place under constant pressure and temperature conditions, the Gibbs free energy is used whereas the Helmholtz energy is used for processes that take place under constant volume and temperature conditions.
Symbolically, the release of free energy, G, in an exergonic reaction (at constant pressure and temperature) is denoted as
{\displaystyle \Delta G=G_{\rm {products}}-G_{\rm {reactants}}<0.\,}
Although exergonic reactions are said to occur spontaneously, this does not imply that the reaction will take place at an observable rate. For instance, the disproportionation of hydrogen peroxide is very slow in the absence of a suitable catalyst. It has been suggested that eager would be a more intuitive term in this context.[2]
More generally, the terms exergonic and endergonic relate to the free energy change in any process, not just chemical reactions. An example of an exergonic reaction is cellular respiration. This relates to the degrees of freedom as a consequence of entropy, the temperature, and the difference in heat released or absorbed.
By contrast, the terms exothermic and endothermic relate to the overall exchange of heat during a process