Mechanical and electrical
Here We can use principle of angular momentum conservation
Here as we know boy + projected mass system has no external torque
Since there is no torque so we can say the angular momentum is conserved
now we know that
m = 2 kg
v = 2.5 m/s
L = 0.35 m
I = 4.5 kg-m^2
now plug in all values in above equation
so the final angular speed will be 0.37 rad/s
Answer:
<h2>velocity = 12.73 km/hr.</h2><h2 />
Explanation:
velocity = distance / time
=<u> 28 km </u>
2.2 hr
= 12.73 km/hr.
A piece of blue paper appears blue because the paper absorbs all colors of light except blue. <em> (b)</em>
So any light that bounces off of the paper and enters your eye must be blue light !
Answer:
F = - k (x-xo) a graph of the weight or applied force against the elongation obtaining a line already proves Hooke's law.
Explanation:
The student wants to prove hooke's law which has the form
F = - k (x-xo)
To do this we hang the spring in a vertical position and mark the equilibrium position on a tape measure, to simplify the calculations we can make this point zero by placing our reference system in this position.
Now for a series of known masses let's get them one by one and measure the spring elongation, building a table of weight vs elongation,
we must be careful when hanging the weights so as not to create oscillations in the spring
we look for the mass of each weight
W = mg
m = W / g
and we write them in a new column, we make a graph of the weight or applied force against the elongation and it should give a straight line; the slope of this line is sought, which is the spring constant.
The fact of obtaining a line already proves Hooke's law.