Answer:
a) Limiting: sulfur. Excess: aluminium.
b) 1.56g Al₂S₃.
c) 0.72g Al
Explanation:
Hello,
In this case, the initial mass of both aluminium and sulfur are missing, therefore, one could assume they are 1.00 g for each one. Thus, by considering the undergoing chemical reaction turns out:
a) Thus, considering the assumed mass (which could be changed based on the one you are given), the limiting reagent is identified as shown below:
Thereby, since there 1.00g of aluminium will consume 0.0554 mol of sulfur but there are just 0.0156 mol available, the limiting reagent is sulfur and the excess reagent is aluminium.
b) By stoichiometry, the produced grams of aluminium sulfide are:
c) The leftover is computed as follows:
NOTE: Remember I assumed the quantities, they could change based on those you are given, so the results might be different, but the procedure is quite the same.
Best regards.
Answer:
The answer is d. water molecules near the surface produce more buoyant force than water molecules within the liquid
Explanation: Surface tension is defined as the attraction on the water of like particles to one another. Water molecules on a surface undergoes cohesion or the sticking together of one molecule to another of the same material.
Carbon dating has<span> given archeologists a more accurate method by which they </span>can<span> determine the age of ancient artifacts. The </span>halflife<span> of </span>carbon 14<span> is </span>5730<span> ± 30 </span>years<span>, and the method of dating lies in trying to determine how </span>much carbon 14<span> (</span><span>the radioactive isotope of carbon) is present in the artifact and comparing it to levels</span>
Mass of X₂O₇ = 54,9g
2x + 33,6g = 54,9g
2x = 54,9g - 33,6g
2x = 21,3g | :2
x = 10,65g/mol
Answer:
The volume of water in water bath is 1,011 Liters.
Explanation:
Length of the water bath, L = 1.85 m
Width of the water bath, W= 0.810 m
Height of the water bath ,H= 0.740 m
Height of the water in water bath, h= 0.740 m - 2.57 inches
1 m = 39.37 inch
Volume of the water in bath = L × W × h
The volume of water in water bath is 1,011 Liters.