Answer:
The number of copper atoms 12.405 ×10²³ atoms.
The number of silver atoms 13.13 ×10²³ atoms.
Beaker B have large number of atoms.
Explanation:
Given data:
In beaker A
Number of moles of copper = 2.06 mol
Number of atoms of copper = ?
In beaker B
Mass of silver = 222 g
Number of atoms of silver = ?
Solution:
For beaker A.
we will solve this problem by using Avogadro number.
The number 6.022×10²³ is called Avogadro number and it is the number of atoms in one mole of substance.
While we have to find the copper atoms in 2.06 moles.
So,
63.546 g = 1 mole = 6.022×10²³ atoms
For 2.06 moles.
2.06 × 6.022×10²³ atoms
The number of copper atoms 12.405 ×10²³ atoms.
For beaker B:
107.87 g = 1 mole = 6.022×10²³ atoms
For 222 g
222 g / 101.87 g/mol = 2.18 moles
2.18 mol × 6.022×10²³ atoms = 13.13 ×10²³ atoms
Explanation:
When an atom's outermost orbital gains or loses electrons (also known as valence electrons), the atom forms an ion. An ion with more protons than electrons carries a net positive charge and is called a cation. An ion with more electrons than protons carries a net negative charge and is called an anion
The driving thrust of the car produced by the engine is the main forward force.
The main opposing forces are air resistance (from the wind) and friction (between the tyres and the road)
Since the air resistance + friction = driving force the car moves at a constant speed.
We are given –
- Final velocity of car is, v= 0
- Initial velocity of car is, u= 100 km/hr
- Time taken, t is = 3 minutes or 180 sec
Here–
Now –
____________________________
_______________________________
Answer:
Explanation:
Hello,
In this case, since the undergoing chemical reaction is:
The corresponding moles of carbon dioxide occupying 40.0 mL (0.0400 L) are computed by using the ideal gas equation at 273.15 K and 1.00 atm (STP) as follows:
Then, since the mole ratio between carbon dioxide and calcium carbonate is 1:1 and the molar mass of the reactant is 100 g/mol, the mass that yields such volume turns out:
Regards.