From the graph, it can be seen that the constant force that John exerted in order to move the object is 14N. Work is calculated by multiplying the force with the distance to which the object moves in parallel with the direction of the force.
Work = Force x displacement
Work = (14 N) x (8 m)
Work = 112 J
The closest value is 110J. Thus, the answer to this item is the second choice.
Answer:
Lenz's law, in electromagnetism, statement that an induced electric current flows in a direction such that the current opposes the change that induced it. This law was deduced in 1834 by the Russian physicist Heinrich Friedrich Emil Lenz (1804–65).
According to the <u>Third Kepler’s Law of Planetary motion</u> “<em>The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.</em>
In other words, this law states a relation between the orbital period of a body (moon, planet, satellite) orbiting a greater body in space with the size of its orbit.
This Law is originally expressed as follows:
<h2>
(1)
</h2>
Where;
is the Gravitational Constant and its value is
is the mass of Jupiter
is the semimajor axis of the orbit Io describes around Jupiter (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
<h2>
(2)
</h2>
Then:
<h2>
(3)
</h2>
Which is the same as:
<h2>
</h2>
Therefore, the answer is:
The orbital period of Io is 42.482 h
Answer:
A car
Explanation:
A car can travel 100 m in 5 seconds
Hope this helps!