1) Reaction
<span>NH4Cl(s) ---> NH3(g) + HCl(g)
2) equilibrium equation, Kc
Kc = [NH3] * [HCl]
3) Table of equilibrium formation
step concentrations
</span>
<span> NH4Cl(s) NH3(g) HCl(g)
start 1.000 mole 0 0
react - x
produce +x + x
------------------ ---------- -----------
end 1 - x +x +x
1 - x = 0.3 => x = 1 - 0.3 = 0.7
[NH3] = [HCl] = 0.7/0.5 liter = 1.4 (I used 0.500 dm^3 = 0.5 liter)
4) Equilibrium equation:
Kc = [NH3] [HCl] = (1.4)^2 = 1.96
Which is the number that you were looking for.
Answer: Kc = 1.96
</span>
A free-radical substitution reaction is likely to be responsible for the observations. The reaction mechanism of a reaction like this can be grouped into three phases:
- Initiation; the "light" on the mixture deliver sufficient amount of energy such that the halogen molecules undergo homologous fission. It typically takes ultraviolet radiation to initiate fissions of the bonds.
- Propagation; free radicals react with molecules to produce new free radicals and molecules.
- Termination; two free radicals combine and form covalent bonds to produce stable molecules. Note that it is possible for two carbon-containing free-radicals to combine, leading to the production of trace amounts of long carbon chains in the product.
Initiation
where the big black dot indicates unpaired electrons attached to the atom.
Propagation
Termination
Substitution Reactions are those reactions in which one nucleophile replaces another nucleophile present on a substrate. These reactions can take place via two different mechanism i.e SN¹ or SN². In SN¹ substitution reactions the leaving group leaves first forming a carbocation and nucleophile attacks carbocation in the second step. While in SN² reactions the addition of Nucleophile and leaving of leaving group take place simultaneously.
Example:
OH⁻ + CH₃-Br → CH₃-OH + Br⁻
In above reaction,
OH⁻ = Incoming Nucleophile
CH₃-Br = Substrate
CH₃-OH = Product
Br⁻ = Leaving group
Organic reactions are typically slower than ionic reactions because in organic compounds the covalent bonds are first broken, this breaking of bonds is a slower step, while, in ionic compounds no bond breakage is required as it consists of ions, so only bond formation takes place which is a quicker and fast step.
Answer:
All the individuals of a species living within a specific area are collectively called a population.
Explanation:
The answer is 4. Hope it helps!