Electrons in their ground state when excited absorb energy and move to higher energy states.
Absorption is when energy is absorbed by electrons and they move to a higher energy state
Emission is when electrons release that absorbed energy and move to a lower energy state
This release of energy results in emission of light from a flame
The correct answer is
Release energy as they move to lower energy states
The rounding up of the aforementioned number to four significant figures is as follows: 3.002 × 10²
<h3>What are significant figures?</h3>
Significant figures are figures that contribute to the general and overall value of the whole number.
Significant figures or digits are specifically meaningful with respect to the precision of a measurement.
Although, the original number given in this question has 9 significant figures, the number; 300.235800 can be rounded up to four significant figures as follows:
- Decimal notation: 300.2
- No. of significant figures: 4
- No. of decimals: 1
- Scientific notation: 3.002 × 10²
Therefore, the rounding up of the aforementioned number to four significant figures is as follows: 3.002 × 10².
Learn more about significant figures at: brainly.com/question/14359464
#SPJ1
The dermal tissue is basically the outer part of the cell that protects the plant cell so in that case it would be the carbohydrate or cell wall. If you would put the choices it could have been a bit better :)
Explanation:
Equilibrium constant of reaction =
Concentration of NO =
Concentration of bromine gas =
Concentration of NOBr gas =
The reaction quotient is given as:
The reaction will go in backward direction in order to achieve an equilibrium state.
1. In order to reach equilibrium NOBr (g) must be produced. False
2. In order to reach equilibrium K must decrease. False
3. In order to reach equilibrium NO must be produced. True
4. Q. is less than K . False
5. The reaction is at equilibrium. No further reaction will occur. False
Answer:
Aquifer
Explanation:
Instead of snowcapped mountains that store water in advance of warmer temperatures, most of our drinking water comes from underground "mountains" of porous materials called aquifers which are replenished by rain. The Biscayne Aquifer is South Florida's lower east coast's primary source of fresh water.