Answer:
Part a)
V = 18.16 V
Part b)
Part c)
P = 672 Watt
Part d)
V = 5.84 V
Part e)
Explanation:
Part a)
When battery is in charging mode
then the potential difference at the terminal of the cell is more than its EMF and it is given as
here we have
now we have
Part b)
Rate of energy dissipation inside the battery is the energy across internal resistance
so it is given as
Part c)
Rate of energy conversion into EMF is given as
Now battery is giving current to other circuit so now it is discharging
now we have
Part d)
Part e)
now the rate of energy dissipation is given as
Answer:
μsmín = 0.1
Explanation:
- There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
- This friction force has a maximum value, that can be written as follows:
where μs is the coefficient of static friction, and Fn is the normal force,
perpendicular to the wall and aiming to the center of rotation.
- This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
- This force has the following general expression:
where ω is the angular velocity of the riders, and r the distance to the
center of rotation (the radius of the circle), and m the mass of the
riders.
Since Fc is actually Fn, we can replace the right side of (2) in (1), as
follows:
- When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:
- (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
- Cancelling the masses on both sides of (4), we get:
- Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:
- Replacing by the givens in (5), we can solve for μsmín, as follows:
Gases can be compressed, because they just take up the space surrounding them. The attractive forces between the particles in a gas are very weak, so the particles are free to move in random direction. They just move along until they collide, either with the walls of the container or with each other. Moreover, gases can be compressed because the particles are far apart and they have space to move into.
Around 27 satelites is used for GPS technology