Answer:
Vb = k Q / r r <R
Vb = k q / R³ (R² - r²) r >R
Explanation:
The electic potential is defined by
ΔV = - ∫ E .ds
We calculate the potential in the line of the electric pipe, therefore the scalar product reduces the algebraic product
VB - VA = - ∫ E dr
Let's substitute every equation they give us and we find out
r> R
Va = - ∫ (k Q / r²) dr
-Va = - k Q (- 1 / r)
We evaluate with it Va = 0 for r = infinity
Vb = k Q / r r <R
We perform the calculation of the power with the expression of the electric field that they give us
Vb = - int (kQ / R3 r) dr
We integrate and evaluate from the starting point r = R to the final point r <R
Vb = ∫kq / R³ r dr
Vb = k q / R³ (R² - r²)
This is the electric field in the whole space, the places of interest are r = 0, r = R and r = infinity
Answer:
The dog has more momentum than the pony.
Explanation:
To solve this problem, we must remember the formula for calculating momentum, which is given below:
momentum = p = m*v
where m represents the mass of the object and v represents the velocity of the object
Using this knowledge, let's calculate the momentum for the dog and the pony.
Dog: p = m*v = (2kg)*(41 m/s) = 82 kg*m/s
Pony: p = m*v = (75kg)*(1 m/s) = 75 kg*m/s
Since 82 > 75, we can conclude that the dog has more momentum.
Hope this helps!
They are all cardiovascular exercises.