He's accelerating at 3 m/s² . That means his speed is increasing by 3 m/s every second.At the end of 8 seconds, his speed is (8 x 3 m/s) = 24 m/s .He's been moving south for the whole 8 seconds.So at the end of that time, his velocity is 24 m/s south .
(1) The linear acceleration of the yoyo is 3.21 m/s².
(2) The angular acceleration of the yoyo is 80.25 rad/s²
(3) The weight of the yoyo is 1.47 N
(4) The tension in the rope is 1.47 N.
(5) The angular speed of the yoyo is 71.385 rad/s.
<h3> Linear acceleration of the yoyo</h3>
The linear acceleration of the yoyo is calculated by applying the principle of conservation of angular momentum.
∑τ = Iα
rT - Rf = Iα
where;
- I is moment of inertia
- α is angular acceleration
- T is tension in the rope
- r is inner radius
- R is outer radius
- f is frictional force
rT - Rf = Iα ----- (1)
T - f = Ma -------- (2)
a = Rα
where;
- a is the linear acceleration of the yoyo
Torque equation for frictional force;
solve (1) and (2)
since the yoyo is pulled in vertical direction, T = mg
<h3>Angular acceleration of the yoyo</h3>
α = a/R
α = 3.21/0.04
α = 80.25 rad/s²
<h3>Weight of the yoyo</h3>
W = mg
W = 0.15 x 9.8 = 1.47 N
<h3>Tension in the rope </h3>
T = mg = 1.47 N
<h3>Angular speed of the yoyo </h3>
v² = u² + 2as
v² = 0 + 2(3.21)(1.27)
v² = 8.1534
v = √8.1534
v = 2.855 m/s
ω = v/R
ω = 2.855/0.04
ω = 71.385 rad/s
Learn more about angular speed here: brainly.com/question/6860269
#SPJ1
Answer:
the name of the SI unit for force is the newton
Answer:
Approximately . (Assuming that , and that the tabletop is level.)
Explanation:
Weight of the book:
.
If the tabletop is level, the normal force on the book will be equal (in magnitude) to weight of the book. Hence, .
As a side note, the and on this book are not equal- these two forces are equal in size but point in the opposite directions.
When the book is moving, the friction on it will be equal to
- , the coefficient of kinetic friction, times
- , the normal force that's acting on it.
That is:
.
Friction acts in the opposite direction of the object's motion. The friction here should act in the opposite direction of that applied force. The net force on the book shall be:
.
Apply Newton's Second Law to find the acceleration of this book:
.
A. attract each other.
The Law of Universal Gravitation discusses the phenomenon of gravity. Remember that gravity is the force that keeps us on Earth; the Earth pulls us down, and our bodies pull back. Gravity is the force of attraction, so the correct answer is a).