Both organisms attempt to use the same limited sources
Answer:
B. Maximum velocity of ejected electrons.
Explanation:
The ejection of electrons form a metal surface when the metal surface is exposed to a monochromatic electromagnetic wave of sufficiently short wavelength or higher frequency (or equivalently, above a threshold frequency), which leads to the enough energy of the wave to incident and get absorbed to the exposed surface emits electrons. This phenomenon is known as the photoelectric effect or photo-emission.
The minimum amount of energy required by a metal surface to eject an electron from its surface is called work function of metal surface.
The electrons thus emitted are called photo-electrons.
The current produced as a result is called photo electricity.
Energy of photon is given by:
where:
h = Planck's constant
frequency of the incident radiation.
Answer:
270 mi/h
Explanation:
Given that,
To the south,
v₁ = 300 mi/h, t₁ = 2 h
We can find distance, d₁
To the north,
v₂ = 250 mi/h, d₂ = 750 miles
We can find time, t₂
Now,
Average speed = total distance/total time
Hence, the average speed for the trip is 270 mi/h.
The pathway for you to be able is in your room you need
Answer:
Explanation:
If we assume there is a sharp boundary between the two masses of air, there will be a refraction. The refractive index of each medium will depend on the relative speeds of light.
n = c / v
If light travels faster in warmer air, it will have a lower refractive index
nh < nc
Snell's law of refraction relates angles of incidence and refracted with the indexes of refraction:
n1 * sin(θ1) = n2 * sin(θ2)
sin(θ2) = sin(θ1) * n1/n2
If blue light from the sky passing through the hot air will cross to the cold air, then
n1 = nh
n2 = nc
Then:
n1 < n2
So:
n1/n2 < 1
The refracted light will come into the cold air at angle θ2 wich will be smaller than θ1, so the light is bent upwards, creating the appearance of water in the distance, which is actually a mirror image of the sky.