Answer:
A resource is a source or supply from which a benefit is produced.
Explanation:
hope it helped :)
Answer:
Exposure of silver chloride to sunlight for a long duration turns grey due to photolytic decomposition i.e decomposition in the presence of sunlight.
Explanation:
When silver chloride, AgCl is exposed to sunlight for a long time, it will undergo decomposition as the sunlight provides sufficient energy needed to decomposed the salt, AgCl to metallic silver and chlorine gas. This can be seen in the equation below:
2AgCl —> 2Ag + Cl2
Answer:
option (B) is correct
Explanation:
In case of nuclear reactors first the nuclear energy is emitted due to the nuclear fission of heavy elements.
This nuclear energy is emitted in the form of heat energy.
This heat energy is used to rotate the turbines, that means it is converted in the form of mechanical energy and then finally this mechanical energy is converted into electrical energy.
2PbO(s) + O₂(g) ⇄ 2PbO₂(s)
Then Δngas = -1
<h3>
What is Δngas?</h3>
The number of moles of gas that move from the reactant side to the product side is denoted by the symbol ∆n or delta n in this equation.
Once more, n represents the growth in the number of gaseous molecules the equilibrium equation can represent. When there are exactly the same number of gaseous molecules in the system, n = 0, Kp = Kc, and both equilibrium constants are dimensionless.
<h3>
Definition of equilibrium</h3>
When a chemical reaction does not completely transform all reactants into products, equilibrium occurs. Many chemical processes eventually reach a state of balance or dynamic equilibrium where both reactants and products are present.
Learn more about Equilibrium
brainly.com/question/11336012
#SPJ4
Answer:
fH = - 3,255.7 kJ/mol
Explanation:
Because the bomb calorimeter is adiabatic (q =0), there'is no heat inside or outside it, so the heat flow from the combustion plus the heat flow of the system (bomb, water, and the contents) must be 0.
Qsystem + Qcombustion = 0
Qsystem = heat capacity*ΔT
10000*(25.000 - 20.826) + Qc = 0
Qcombustion = - 41,740 J = - 41.74 kJ
So, the enthaply of formation of benzene (fH) at 298.15 K (25.000 ºC) is the heat of the combustion, divided by the number of moles of it. The molar mass od benzene is: 6x12 g/mol of C + 6x1 g/mol of H = 78 g/mol, and:
n = mass/molar mass = 1/ 78
n = 0.01282 mol
fH = -41.74/0.01282
fH = - 3,255.7 kJ/mol