Answer : The angle between the string and the horizontal is 30 degrees
Explanation: Imagine this a a triangle where the length of the string (200m) is the hypotenuse and the height of the kite is the opposite side (100m) .
Let the angle between the string and the horizontal be theta.
Now sin (Theta) = opposite side/hypotenuse
= 100/200 = 1/2
Therefore Theta = Sin ⁻¹ ( 1/2 )
Theta = 30 degrees
<em>The gravitational force between two objects is inversely proportional to the square of the distance between the two objects.</em>
The gravitational force between two objects is proportional to the product of the masses of the two objects.
The gravitational force between two objects is proportional to the square of the distance between the two objects. <em> no</em>
The gravitational force between two objects is inversely proportional to the distance between the two objects. <em> no</em>
The gravitational force between two objects is proportional to the distance between the two objects. <em> no</em>
The gravitational force between two objects is inversely proportional to the product of the masses of the two objects. <em> no</em>
Answer:
Explanation:
We can use the conservation of momentum. The initial momentum is equal to the final momentum:
x-coordinate
(1)
y-coordinate
(2)
We can divide equations (2) and (1):
I hope it helps you!
Answer:
80 Ω.
Explanation:
In this circuit the resistances are in series.The equivalent resistance of a series circuit is equal to the sum of the resistances. Req= 60 + 20 = 80 Ω.
Answer:
4 km/hr
Explanation:
suppose 's' is Diane's speed with no current.
't' represents time in hrs.
Using the formula:
Distance = speed 's' x time 't'
-> when she swims against the current, equation will be,
5= (s-2)t
t= 5/(s-2)
->when she was swimming with the current, equation is,
15= (s+2) t
t= 15/(s+2)
equating eq(1) and (2)
5/(s-2) = 15/(s+2)
5s + 10 = 15s - 30
40= 10s
s= 40/10
s=4
Therefore, if there were no current, her speed is 4km/hr