Answer:
128 Kelvin = 128 - 273.15 = -145.15 Celsius. Temperature conversion chart Sample temperature conversions 103.55 Kelvin to degrees Fahrenheit 39.82 degrees Fahrenheit to Kelvin
Explanation:
hope this helps have a good day
Measuring density: Measure the mass (in grams) of each mineral sample available to you. The mass of each sample is measured using a balance or electronic scale. Record mass on a chart.
A point charge is located at the origin of a coordinate system. A positive charge is brought in from infinity to a point. The charges are at distance for given electrical potential energy is 3.34 x 10⁷ m.
<h3>What is electric potential energy?</h3>
The electric potential energy is the work done by a test charge to bring it from infinity to a particular location.
The electric potential energy is given by the relation,
V = kQ/r
where k = 9 x 10⁹ J.m/C ,Q = 3 x 10⁻⁹ C, V =8.09 × 10⁻⁷ J.
Substitute the values into the expression to get the distance between the charges.
8.09 × 10⁻⁷ = 9 x 10⁹ x 3 x 10⁻⁹ / r
r =3.34 x 10⁷ m
Thus, the distance between the charges will be 3.34 x 10⁷ m.
Learn more about electric potential energy.
brainly.com/question/12645463
#SPJ1
Answer:
Accuracy is how close a measured value is to an accepted value. <u>Precision is how close measurements are to one another.</u> To make measurements, you have to evaluate both the accuracy and the precision to get a correct value.
Answer:
the frequency of this mode of vibration is 138.87 Hz
Explanation:
Given;
length of the copper wire, L = 1 m
mass per unit length of the copper wire, μ = 0.0014 kg/m
tension on the wire, T = 27 N
number of segments, n = 2
The frequency of this mode of vibration is calculated as;
Therefore, the frequency of this mode of vibration is 138.87 Hz