Answer:
46.3cm
Step-by-step explanation:
- perimeter is length around shape
- 25/2 multiply by 2 becoz it's got two equal sides
- 32/3 multiply by two for the other equal sides
- add answers together to give you
- 46.3cm
Remark
It's a right triangle so the Pythagorean Theorem applies. All you have to do is put the right things in the right places of the formula.
Givens
a = x
b = x + 4
c = 20
Formula and Substitution.
a^2 + b^2 = c^2
x^2 + (x + 4)^2 = 20^2
Solution
x^2 + x^2 + 8x + 16 = 20 Collect the like terms on the left.
2x^2 + 8x + 16 = 20 Subtract 20 from both sides.
2x^2 + 8x + 16 - 20 = 0
2x^2 + 8x - 4 = 0 Divide through by 2
x^2 + 4x - 2 = 0
Use the quadratic formula
a = 1
b = 4
c = - 2
From which x = (-4 +/- sqrt(24) ) / 2
x1 = (- 4 +/- sqrt(4*6) ) / 2
x1 = (- 4 +/- 2 sqrt(6) ) / 2
x1 = -2 + sqrt(6)
x2 = -2 - sqrt(6) This is an extraneous root. No line can be minus.
x1 = + 0.4495
x2 = x + 4 = 4.4495
Answer:
True
Step-by-step explanation:
Answer:
890 beads can be fitted in the triangular prism.
Step-by-step explanation:
If we can fill the spherical beads completely in the triangular prism,
Volume of the triangular prism = Volume of the spherical beads
Volume of triangular prism = Area of the triangular base × Height
From the picture attached,
Area of the triangular base =
=
By applying Pythagoras theorem in the given triangle,
AC² = AB² + BC²
(13)² = 5² + BC²
169 = 25 + BC²
BC² = 144
BC = 12
Area of the triangular base =
= 30 cm²
Height of the triangular prism = 18 cm
Volume of the triangular prism = 30 × 18
= 540 cm³
Volume of one spherical bead =
=
= 0.606 cm³
Let there are 'n' beads in the triangular prism,
Volume of 'n' beads = Volume of the prism
540 = 0.606n
n = 890.90
n ≈ 890
Therefore, 890 beads can be fitted in the triangular prism.