The compound that could serve as a reactant in the neutralization reaction is H2SO4
Explanation
Neutralization reaction occur between an acids and a base. H2SO4 ( sulfuric acid) is a strong acid. It can be neutralized by strong base such as NaOH ( sodium hydroxide)
Example of neutralization reaction is
2NaOH + H2SO4 → Na2SO4 + 2H2O
Answer:
Pp O2 = 82.944 KPa
Explanation:
heliox tank:
∴ %wt He = 32%
∴ %wt O2 = 68%
∴ Pt = 395 KPa
⇒ Pp O2 = ?
assuming a mix of ideal gases at the temperature and volumen of the mix:
∴ Pi = RTni/V
∴ Pt = RTnt/V
⇒ Pi/Pt = ni/nt = Xi
⇒ Pi = (Xi)*(Pt)
∴ Xi: molar fraction (ni/nt)
⇒ 0.68 = mass O2/mass mix
assuming mass mix = 100 g
⇒ mass O2 = 68 g
∴ molar mass O2 = 32 g/mol
⇒ moles O2 = (68 g)(mol/32 g) = 2.125 mol O2
⇒ mass He = 32 g
∴ molar mass He = 4.0026 g/mol
⇒ moles He = (32 g)(mol/4.0026 g) = 7.995 mol He
⇒ nt = nO2 + nHe = 2.125 mol + 7.995 mol = 10.12 moles
molar fraction O2:
⇒ X O2 = nO2/nt = (2.125 mol/10.12 mol) = 0.2099
⇒ Pp O2 = (X O2)(Pt)
⇒ Pp O2 = (0.2099)(395 KPa)
⇒ Pp O2 = 82.944 KPa
Answer:
copper(ll) carbonate
Explanation:
Since the product is a salt which is copper(II) carbonate, water and carbon dioxide, this reaction is an acid + metal carbonate reaction.
Looking at the salt, Cu²⁺ has to be part of the reactants.
Hence, the missing compound there has to be copper(ll) carbonate, CuCO₃.
The balanced chemical equation would be:
CuCO₃ + 2HNO₃➙ Cu(NO₃)₂ +H₂O +CO₂
P.s. You left out CO₂ as a product in Q2 ;)
Just a recap of the main reactions you would've learnt:
1) Acid + base/ alkali ➙ salt + water
2) Acid + metal ➙ salt + hydrogen gas
3) Acid + metal carbonate ➙ salt + H₂O + CO₂
Answer:
Volatile
Explanation:
Nonmetal are usually volatile, which means it evaporate easily.