You need to have the Mass and velocity
Answer:
Approximately 0.0898 W/m².
Explanation:
The intensity of light measures the power that the light delivers per unit area.
The source in this question delivers a constant power of . If the source here is a point source, that of power will be spread out evenly over a spherical surface that is centered at the point source. In this case, the radius of the surface will be 9.6 meters.
The surface area of a sphere of radius is equal to . For the imaginary 9.6-meter sphere here, the surface area will be:
.
That power is spread out evenly over this 9.6-meter sphere. The power delivered per unit area will be:
.
Upward and downward forces cancel out. Net force is 8 newtons to the right
The third option seems correct. Using any bag more than once will help in decreasing the carbon foot print.
This isds beause, if you use paper bag once only, then paper bag is being utilised and more and more paper is being used. So the best way is to use the bag more than once, whichever bag u are using.
Answer:
y = 17 m
Explanation:
For this projectile launch exercise, let's write the equation of position
x = v₀ₓ t
y = t - ½ g t²
let's substitute
45 = v₀ cos θ t
10 = v₀ sin θ t - ½ 9.8 t²
the maximum height the ball can reach where the vertical velocity is zero
v_{y} = v_{oy} - gt
0 = v₀ sin θ - gt
0 = v₀ sin θ - 9.8 t
Let's write our system of equations
45 = v₀ cos θ t
10 = v₀ sin θ t - ½ 9.8 t²
0 = v₀ sin θ - 9.8 t
We have a system of three equations with three unknowns for which it can be solved.
Let's use the last two
v₀ sin θ = 9.8 t
we substitute
10 = (9.8 t) t - ½ 9.8 t2
10 = ½ 9.8 t2
10 = 4.9 t2
t = √ (10 / 4.9)
t = 1,429 s
Now let's use the first equation and the last one
45 = v₀ cos θ t
0 = v₀ sin θ - 9.8 t
9.8 t = v₀ sin θ
45 / t = v₀ cos θ
we divide
9.8t / (45 / t) = tan θ
tan θ = 9.8 t² / 45
θ = tan⁻¹ ( 9.8 t² / 45
)
θ = tan⁻¹ (0.4447)
θ = 24º
Now we can calculate the maximum height
v_y² = - 2 g y
vy = 0
y = v_{oy}^2 / 2g
y = (20 sin 24)²/2 9.8
y = 3,376 m
the other angle that gives the same result is
θ‘= 90 - θ
θ' = 90 -24
θ'= 66'
for this angle the maximum height is
y = v_{oy}^2 / 2g
y = (20 sin 66)²/2 9.8
y = 17 m
thisis the correct