The charge present determines a force to be attractive or repulsive.
The charges acquired by two bodies determines the Force as Attractive Or Repulsive.
Electric Force applied due to Electrical charges is same in magnitude but opposite in direction. This corresponds this phenomenon equivalent to the Newton's Third Law.
Examples of the experiments and observations:
- On combing hair through a comb and then keeping it close to small pieces of paper shows attraction of paper pieces towards the comb.
This occurs due to the Electric charges present in the comb that induces charge in paper pieces leading to their attraction.
- In both Gravitational Force and Coulomb force, the force remains inversely proportional to the square of the distance following the Inverse Square Law being the Central Force system. This only differs by the fact that in Gravitational Force, masses are used and in Coulomb force, charges are used.
The more the distance between the charges, the less is the Electric Force.
The lesser the distance between the charges, the more is the Electric Force.
If both the objects are charged the same i.e. either positive or negative then the Force is Repulsive and if the charges are Oppositely charged then the force is attractive.
Hence, the charge present determines a force to be attractive or repulsive.
Learn more about Coulomb Force here, brainly.com/question/15451944
#SPJ4
Answer:
3.43 m/s^2
Explanation:
Force is equal to mass times acceleration. (F=ma). You can use inverse operations to get the formula for acceleration, which is acceleration is equal to force divided by mass. (a=F/m). Since there are two forces here, the force friction (55 N), and the force applied (175 N), we must solve for the net force. To solve for the net force, you take the applied force (175 N) and subtract the frictional force from it (55 N). Thus, the net force is 120 N. With this done, we can now solve for our acceleration.
Using the equation for acceleration, we take the force and divide it by mass.
120/35
Answer: 3.43* m/s^2**
*Note: This is rounded to the nearest hundredth, the full answer is: 3.42857143
**Note: In case you're confused, this is meters per second squared.
The correct answers are: Options 2,4 and, 5
2)He solved Ptolemy’s model by proving elliptical orbits.
4)He determined that planets move faster when closer to the Sun.
5)He discovered laws of planetary motion.
At the end of the baseball bat, because with the length of the bat he had a longer reach and the end of the bat was moving faster than his hands were