<u>Answer:</u>
<h2>
All the waves are pertubations that propagate (transport) energy.</h2><h2>
</h2>
Nevertheless, they have some differences:
1. Light waves are<u> electromagnetic waves</u>, while sound and water waves are <u>mechanical waves</u>, this is the first and principal difference.
2. Electromagnetic waves can<u> propagate in vacuum</u> (they do not need a medium or material), but mechanical waves obligatory need a material to propagate
3. Light waves are always <u>transversal waves</u>, this means <u>the oscillatory movement is in a direction that is perpendicular to the propagation</u>; but mechanical waves may be both: <u>longitudinal waves</u> (the oscillation occurs in the same direction as the propagation) or transversal waves.
4. Electromagnetic waves propagates at a <u>constant velocity</u> (Light velocity) while the velocity of mechanical waves will depend on the type of wave and the <u>density</u> of the medium or material.
5. <u>Mechanical waves</u> are characterized by the regular variation of a single magnitude, while <u>electromagnetic waves</u> are characterized by the variation of two magnitudes: the electric field and the magnetic field
6. <u>Water waves</u> are 2-dimensional waves, while the <u>light and the sound</u> are tridimensional spherical waves
7. Light waves <u>transports energy in the form of </u><u>radiation</u>, while mechanical waves t<u>ransport energy with </u><u>material</u>
Meters per second squared:
If you think about it, acceleration is about how fast speed changes. Speed is measured in meters per second:
So if you take that and just measure it over time, you get meters per second squared.
Answer:
f ’= 97.0 Hz
Explanation:
This is an exercise of the doppler effect use the frequency change due to the relative movement of the fort and the observer
in this case the source is the police cases that go to vs = 160 km / h
and the observer is vo = 120 km / h
the relationship of the doppler effect is
f ’= f₀ (v + v₀ / v- )
let's reduce the magnitude to the SI system
v_{s} = 160 km / h (1000 m / 1km) (1h / 3600s) = 44.44 m / s
v₀ = 120 km / h (1000m / 1km) (1h / 3600s) = 33.33 m / s
we substitute in the equation of the Doppler effect
f ‘= 100 (330+ 33.33 / 330-44.44)
f ’= 97.0 Hz
Answer:
wallah i don't understand anything with my stoopid brain
Explanation: