Isothermal Work = PVln(v₂/v₁)
PV = nRT = 2 mole * 8.314 J/ (k.mol) * 330 k = 5487.24 J
Isothermal Work = PVln(v₂/v₁) v₂ = ? v₁ = 19L,
1.7 kJ = (5487.24)In(v₂/19)
1700 = (5487.24)In(v₂/19)
In(v₂/19) = (1700/5487.24) = 0.3098
In(v₂/19) = 0.3098
(v₂/19) =
v₂ = 19*
v₂ = 25.8999
v₂ ≈ 26 L Option b.
Answer:
38.4 m/s
Explanation:
a) at t = 3.2s.
b) at t = 3.2 + Δt.
c) As Δt approaches 0. We can find the velocity by the ratio of Δx/Δt
As Δt approaches 0, v = 38.4 + 0 = 38.4 m/s
Answer:
0.12m/s
Explanation:
v=λf
Given that, λ = 12cm = 0.12m
T = 1second
(A period T is the time required for one complete cycle of vibration to pass a given point)
frequency 'f' is unknown but we can get frequency from f = 1/T = 1/1 = 1Hz
therefore, v= 0.12 × 1 = 0.12m/s
Answer: Option B
Explanation : When a negatively charged object A gets in contact with the neutral object B, the negative charge of object will induce the opposite charges on object B. Hence, there will be a positive charge on object B