Not sure but i will say D
a) At a position of 2.0m, the Initial energy is
all made up of the potential energy=m*g*hi<span>
and meanwhile at 1.5 all its energy is also potential energy=m*g*hf
The percentage of energy remaining is E=m*g*hi/m*g*hf x 100
and since mass and gravity are constant so it leaves us with
just E=hi/hf
which 1.5/2.0 x100= 75% so we see that we lost 25% of the
energy or 0.25 in fraction
b) Here use the equation vf^2=vi^2+2gd
<span>where g is gravity, vf is the final velocity and vi is the
initial velocity while d is the distance travelled
so in here we are looking for the vi so let us isolate that
variable
we know that at maximum height or peak, the velocity is 0 so
vf is 0
therefore,</span></span>
vi =sqrt(-2gd) <span>
vi =sqrt(-2x-9.81x1.5) </span>
<span>vi =5.4 m/s
<span>c) The energy was converted to heat due to friction with the
air and the ground.</span></span>
By definition, we have to:
Newton's first law states that any object will remain in a state of rest or with a uniform rectilinear motion unless an external force acts on it.
Therefore, according to the first law of Newton, if the object is already in motion and has no force acting on it then, it will remain with a uniform rectilinear motion.
Answer:
The object will remain with a uniform rectilinear movement when the external force does not act on it.
Assuming that the object starts at rest, we know the following values:
distance = 25m
acceleration = 9.81m/s^2 [down]
initial velocity = 0m/s
we want to find final velocity and we don't know the time it took, so we will use the kinematics equation without time in it:
Velocity final^2 = velocity initial^2 + 2 × acceleration × distance
Filling everythint in, we have:
Vf^2 = 0^2 + (2)(-9.81)(-25)
The reason why the values are negative is because they are going in the negative direction
Vf^2 = 490.5
Take the square root of that
Final velocity = 22.15m/s which is answer c