Answer is: 588.15 <span>grams of ethanol.
</span>Chemical reaction: C₆H₁₂O₆ → 2C₂H₅OH + 2CO₂.
m(C₆H₁₂O₆) = 1150 g.
n(C₆H₁₂O₆) = m(C₆H₁₂O₆) ÷ M(C₆H₁₂O₆).
n(C₆H₁₂O₆) = 1150 g ÷ 180.16 g/mol.
n(C₆H₁₂O₆) = 6.38 mol.
From chemical reaction: n(C₆H₁₂O₆) : n(C₂H₅OH) = 1 : 2.
n(C₂H₅OH) = 12.76 mol.
m(C₂H₅OH) = 12.76 mol · 46.07 g/mol.
m(C₂H₅OH) = 588.15 g.
Answer:
Explanation:
We are given the percent composition: 22.5% phosphorus and 77.5% chlorine.
We can assume there are 100 grams of this compound. We choose 100 because we can simply use the percentages as the masses.
Next, convert these masses to moles, using the molar masses found on the Periodic Table.
- P: 30.974 g/mol
- Cl: 35.45 g/mol
Use the molar masses as ratios and multiply by the number of grams.
Divide both of the moles by the smallest number of moles to find the mole ratio.
The mole ratio is about 1 P: 3 Cl, so the empirical formula is written as:<u> PCl₃</u>
Using these Elements. Here would be the 4 ionic compounds.
CaF2
VF5
CaS
V2S5
Answer:
Explanation:
We are asked to find the new volume of a gas after a change in temperature. We will use Charles's Law, which states the volume of a gas is directly proportional to the temperature. The formula for this law is:
The gas was heated to 150 degrees Celsius and had a volume of 1587.4 liters.
The temperature was 100 degrees Celsius, but the volume is unknown.
We are solving for the volume at 100 degrees Celsius, so we must isolate the variable V₂. It is being divided by 100°C and the inverse of division is multiplication. Multiply both sides of the equation by 100°C.
The units of degrees Celsius cancel.
The original measurement of volume has 5 significant figures, so our answer must have the same. For the number we calculated, that is the tenth place. The 6 in the hundredth place to the right tells us to round to 2 up to a 3.
The volume of the gas at 100 degrees Celsius is approximately <u>1058.3 liters.</u>