A molecule retains the chemical properties of the component element.
Answer:
<h3>Gall Bladder:</h3>
The gallbladder is a pear-shaped, hollow structure located under the liver and on the right side of the abdomen. Its primary function is to store and concentrate bile, a yellow-brown digestive enzyme produced by the liver.
Without a gallbladder, there's no place for bile to collect. Instead, your liver releases bile straight into the small intestine. This allows you to still digest most foods. However, large amounts of fatty, greasy, or high-fiber food become harder to digest.
The gallbladder is part of the biliary tract. The gallbladder serves as a reservoir for bile while it's not being used for digestion. The gallbladder's absorbent lining concentrates the stored bile.
<h2>HOPE U UNDERSTOOD</h2>
THANKS★
Answer:
Option C. 52.057
Explanation:
The following data were obtained from the question:
Isotope >> Mass number > Percentage
A (Cr-50) > 50 >>>>>>>>>> 4.3
B (Cr-52) > 52 >>>>>>>>>> 83.8
C (Cr-53) > 53 >>>>>>>>>> 9.5
D (Cr-54) > 54 >>>>>>>>>> 2.4
Average atomic mass =?
The average atomic mass of chromium, Cr can be obtained as follow:
Average atomic mass = [(Mass of A × A%) /100] + [(Mass of B × B%) /100] + [(Mass of C × C%) /100] + [(Mass of D × D%) /100]
Atomic mass of Cr = [50×4.3)/100] + [52×83.8)/100] + [53×9.5)/100] + [54×2.4)/100]
= 2.15 + 43.576 + 5.035 + 1.296
Atomic mass of Cr = 52.057
Therefore, the atomic mass of chromium, Cr is 52.057
Answer:
B. It is highly flammable.
Explanation:
Chemical properties deal with how the substance will behave when brought into contact with other substances, and usually have to do with it undergoing some kind of reaction. Flammability is a chemical property.
Density, melting point, and color are all considered physical properties.
Answer is: <span>c. Fe</span>₃<span>O</span>₄<span>.
</span>ω(Fe) = 72,360%.
ω(O) = 100% - 72,36% = 27,64%.
For example, if we the mass of compound is 100 g:
m(Fe) = 72,36 g.
n(Fe) = m(Fe) ÷ M(Fe).
n(Fe) = 72,36 g ÷ 55,85 g/mol.
n(Fe) = 1,296 mol.
n(O) = 27,64 g ÷ 16 g/mol.
n(O) = 1,727 mol.
n(Fe) : n(O) = 1,296 mol : 1,727 mol.
n(Fe) : n(O) = 1 : 1,33 or 3 : 4.