Answer:
Mitochondria are abundantly present in mammalian cells. Their fraction varies from tissue to tissue, ranging from <1% (volume) in white blood cells to 35% in heart muscle cells. However, mitochondria should not be thought of as single entities, but rather a dynamic network that continuously undergoes fission and fusion processes. In skeletal muscle, mitochondria exist as a reticular membrane network. The subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria are located in distinct subcellular regions, and they possess subtle differences in biochemical and functional properties that are characterized by their anatomical locations. SS mitochondria lie directly beneath the sarcolemmal membrane and the IMF mitochondria are located in close contact with the myofibril. Their different properties are likely to influence their capacity for adaptation. SS mitochondria account for 10-15% of the mitochondrial volume and this population has been shown to be more susceptible to adaptation than the IMF mitochondria. However, the IMF mitochondria were found to have higher rates of protein synthesises, enzyme activities and respiration (1).
Explanation:
Answer:
It bonds with the added H+ or OH in solution.
Explanation:
Answer:
Increasing the temperature increases reaction rates because of the disproportionately large increase in the number of high energy collisions. It is only these collisions (possessing at least the activation energy for the reaction) which result in a reaction.
Explanation:
Answer:
We need 10.14 grams of sodium bromide to make a 0.730 M solution
Explanation:
Step 1: Data given
Molarity of the sodium bromide (NaBr) = 0.730 M
Volume of the sodium bromide solution = 135 mL = 0.135 L
Molar mass sodium bromide (NaBr) = 102.89 g/mol
Step 2: Calculate moles NaBr
Moles NaBr = Molarity NaBr * volume NaBr
Moles NaBr = 0.730 M * 0.135 L
Moles NaBr = 0.09855 moles
Step 3: Calculate mass of NaBr
Mass NaBr = 0.09855 moles * 102.89 g/mol
Mass NaBr = 10.14 grams
We need 10.14 grams of sodium bromide to make a 0.730 M solution
Answer:
k = -0.006.
T₀ = 15 °C
Explanation:
Hola.
En este caso, considerando la gráfica mostrada en el archivo adjunto, podemos evidenciar que los datos dados se comportan de manera lineal, por lo que basado en la ecuación, T=k*h+To, podemos calcular la pendiente que basicamente es igual a k, tomando dos puntos en la gráfica:
Además, el valor de la temperatura inicial se puede extraer de la tabla, dado que esta es cuando la altura es 0 m, es decir 15 °C.
¡Saludos!