Answer:
d
ionic bond is formed when there is transfer of electrons and is composed of a positive cation and a negative anion
Answer:
THE NEW PRESSURE OF THE HELIUM GAS IS 124kPa AFTER THE VOLUME WAS INCREASED FROM 2.48 L TO 2.98 L
Explanation:
Using Boyle's law which states that at constant temperature, the pressure of a given gas is inversely proportional to the volume occupied by the gas.
Mathematically,
P1 V1 = P2 V2
P1 = 150 kPa = 150 * 10^3 Pa
V1 = 2.48 L
V2 = 2.98 L
P2 = ?
Rearranging the formula making P2 the subject of the equation, we obtain;
P2 = P1 V1 / V2
P2 = 150 * 10^3 * 2.48 / 2.98
P2 = 372 * 10 ^3 / 2.98
P2 = 124.83 * 10^3 Pa or 124.8kPa
In other words, the new pressure of the helium gas after its volume was increased from 2.48 L to 2.98 L is 124.8kPa.
First we need to know that the boiling point of water in C is 100 and we just need to solve for x in the equation:
-33.75-(-77.75) / 100 = 100-(-77.75) / x
44.4/100 = 177.75 / x
x = 177.75*100/44.4 = 400.33
The boiling point of water in ∘a would be 400.33∘a.
In an ionic bond :
=》B. one atom accepts electrons from another.
in this bond an atom ( <em><u>metallic</u></em> ) loses its electrons and another atom ( <em><u>non- metallic</u></em> ) accepts the electrons, and since there isn't the equal positive and negative charges in the atoms, they forms <em><u>cations</u></em> ( +ve charge ) and <em><u>anions </u></em>( -ve charge )
and get stacked or <em><u>attracted</u></em> to each other by strong <em><u>electrostatic force</u></em>.
Answer:
Explanation:
Unclear question.
I infer you want a clear rendering, which reads;
A 258.4 g sample of ethanol (C2H5OH) was burned in a calorimetric pump using a Dewar glass. As a consequence, the water temperature rose to 4.20 ° C.
If the heat capacity of the water and the surrounding glass was 10.4 kJ / ° C, calculate the heat of combustion of one mole of ethanol.